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THE CORRELATION OF OBLIQUE SHOCK  PARAMETERS 

FOR RATIOS OF SPECIFIC HEATS FROM 1 TO 5/3 
WITH AF'PLICATION TO REAL GAS FLOWS 

By Mitchel H. Bertram and Barbara S. Cook 

An analytic  investigation w a s  made t o  show the  extent  of correlation of the 
exact  oblique shock  parameters t h a t  may be  accomplished by  means of s imi l a r i t y  
parameters  suggested by approximate  theory. The exact   theory  for   the  inviscid 
flow  of a perfect  gas w a s  calculated  for  Mach numbers of 1.1 t o  40, ra t ios   o f  
spec i f ic   hea ts  from 1 t o  5/3,  and angles  of  attack from 0' t o  shock  detachment. 
From consideration  of the approximate  theory and the concept  of e f fec t ive   ra t io  
of specif ic   heats ,   the   obl ique shock correlations were found t o  be use fu l   fo r   t he  
rapid  calculation of many flow  parameters f o r  an equilibrium  real   gas.  Some use- 
fu l  correlations  are  also  given  for  the  case  of  isentropic  expansion  around a 
sharp  corner. 

INTRODUCTION 

Two-dimensional oblique shock theory i s  one  of t he   bas i c   t oo l s   i n  aerodynamic 
work. Tables and charts   are  now ava i l ab le   fo r   r e su l t s  from two-dimensional 
oblique shock theory   for   the  two gases most widely  used i n  wind-tunnel work, a i r  
and helium,  over  extensive  ranges of M a c h  number. (See  refs.  1 t o  8, f o r  
example.) In  reference 9, the   des i re  for air-helium  transformations prompted  an 
examination  of the  oblique shock s imi la r i ty  l a w s .  This  examination w a s  f o r   t h e  
f i r s t -order   case  with Mach  number approaching i n f i n i t y  and some higher  order 
approximations  with the  air-helium comparison  paramount.  There are  cases where 
oblique shock  parameters are   desired  for   gases   other   than a i r  o r  helium o r  where 
ex i s t ing   t ab l e s   fo r  a gas  are  inadequate.  In  these  cases, the  poss ib i l i ty  of 
using  exis t ing  tables  or charts   for   gases   other   than  the one  of i n t e r e s t   t o  
obtain  the  desired  information i s  suggested  by  similarity  considerations. 

This  analytic  investigation w a s  undertaken t o  determine  the  correlating 
powers of  certain  similarity  parameters  suggested by approximate  theory. Some 
comparisons  with  approximate  theories  were  also made. I n   o r d e r   t o  have as wide a 
comparison as possible, Mach numbers from the  low supersonic t o   t h e  hypersonic 
range  have  been  included,  deflection  angles from 0' t o  shock  detachment, and 
ra t ios   o f   spec i f ic   hea ts  from u n i t y   t o  5/3  in   inviscid  f low.  From consideration 
of t h e  approximate  theory  and the   e f f ec t ive   r a t io  of specific  heats  concept,   the 
oblique shock correlations were found usefu l   for   the   rap id   ca lcu la t ion   of  many 
flow  parameters f o r  an equilibrium real gas. 



SYMBOLS 

CP pressure  coefficient 

h s ta t ic   en tha lpy  

K flow  deflectton  similarity  parameter  (see eq. ( 5 ) )  

Kp (7 + 1) ( 1 -2) 
Kpu 2 ( 7  + 1) (l - -) PmUm 

p2'2 

M Mach  number 

P pressure 

T temperature 

U velocity 

7 isentropic exponent ; equal t o  r a t i o  of spec i f i c   hea t s   fo r  
a perfect  gas 

7e 

6 * flow  deflection  angle 

effective  value  of 7 f o r  flow  across shock waves (eq. (16)) 

e angle between  free-stt-eam  flow direct ion and shock wave 

, P  
, .  

density 

Subscripts : 

2 condition  behind shock wake ' 

co free-stream  conditions 

N normal t o  shock wave 

S at constant  entropy 
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t to t a l   p re s su re  

Superscr ip ts   in   paren theses   re fe r   to  
se r ies .  

PRESENTATION 

the  order of  an  equation  developed i n  

OF THEORY 
8 ,  

F i r s t  l e t  us examine some sample r e su l t s  from exact  two-dimensional  oblique 
shock theory f o r  a perfect  gas  with a constant   value  for   the  ra t io  of spec i f ic  
heats.   (See  ref.  2, f o r  example. ) Two Mach numbers have  been chosen;  one i s  
& = @, which is ' intended  to  be  representative  of  the  lower  supersonic regime, 
and the   o ther  i s  Ea, = 20, a Mach  number high enough to  be  considered  truly  hyper- 
sonic. The r e s u l t s  from the  calculat ions  are   given  in   f igure 1 f o r   s t a t i c   p r e s -  
sure,  density,  temperature, mass flow  ratio, and  shock angle as a function of 
def lect ion  angle   for   values  of t h e   r a t i o  of  specific  heats  ranging from 1 t o  5 / 3 .  
The f i r s t -order   e f fec t   o f  7, t h e   r a t i o  of specif ic   heats ,  i s  evident  except  for 
the  case of density r a t i o  where there  i s  l i t t l e  e f f ec t  of  changing the  value of 
7 a t  small values of  the  def lect ion  angle  6 .  This comment appl ies   a l so   to  mass 
flow  ratio,  although  over a l e s s e r  range of angle  of  at tack.  Qualitatively,   the 
e f f ec t  of 7 on a given  parameter  changes l i t t l e  between Mach number E and 20. 

A f i r s t -order   ins ight   in to   the   e f fec t   o f  7 may be  obtained from t h e  f o l -  
lowing  equations which are   the  f i rs t -order   small-per turbat ion  theory f o r  a wedge 
flow: 

- 
4 P -  

Equations (l), ( 2 ) ,  and (3) are  given  in  reference 2 and equation ( 4 )  i s  obtained 
by substi tuting  equation (1) in to   the   exac t   re la t ion  between MN and p2/pm. 
From this   theory,  which i s  exact f o r  the   var ia t ion  of t h e   i n i t i a l   s l o p e  of these 
parameters w i t h  wedge deflection  angle, the in i t i a l   i n f luence  of 7 is  clear .  
Temperature r a t i o  i s  most s e n s i t i v e   t o  7, pressure  ra t io  i s  less   sens i t ive   bu t  
7 s t i l l  has  an  important  effect and dens i ty   ra t io  is  not a function of 7 t o  
f i rs t  order. 

First-order  small-perturbation  theory would not  be  expected t o  be  adequate 
over  an  extensive range of angle  of  at tack  especially  in  the  hypersonic Mach 
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number regime. For hypersonic  flow  over a wedge, Linnell  (ref. 10) developed 
the  following  relation: 

i n  which K i s  the  parameter  correlating Mach number and def lect ion angle 
e f f e c t s .   I n  i t s  o r ig ina l  form, t h i s  parameter was given  by  the  hypersonic  result 
K = &6. Ivey and Cline (ref.  11) modified K so as t o  connect t he   l i nea r i zed  
theory  ( in  this  case,   eqs.  (1) t o  ( 4 ) )  with  the  hypersonic  result  of Linnell, 
and they  proposed K = G26/p.  Equation ( 5 )  may also  be  der ived  to   give  the 

hypersonic  result  K = & s i n  6 i f  the  exact  oblique shock relations  are  reduced 
with  the  assumption  sin 6 = t a n  6. Following the   l ead  of reference 11 a value 
of K i s  proposed t o  extend  the  usefulness of  equation ( 5 )  over a large  range  of 
deflection  angle and Mach number: 

K = -  %' s i n  6 
P 

I n  a form  showing the  correlation  parameters which are  obtained,  equation ( 5 )  
with  the  introduction of equation (6)  may be wr i t ten   as  

or 

With the  small-perturbation  assumption,  the  first-order  solution of equation (7) 
i s  equation (1). 

If the  following  exact  relation between  shock angle  parameters and pressure 
ratio  parameter i s  u t i l i z e d  

- - -  7 + 1g: .) = KQ2 - 
47 2 

with  equation ( 7 ) ,  t he   r e l a t ion  between  shock angle and deflection  angle i s  

7 + 1 G 2  M, s i n  8 = - - 
4 B  

This   re la t ion i s  compatible  with  equation ( 4 ) .  
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In   cor re la t ion  form the   dens i ty   ra t io  is 

This   re la t ion i s  exact   for  a perfect  gas  with  constant 7 but, where Moo s i n  8 

i s  given by equation (9) the  l imitations  inherent  in  equation (9) apply. 

Busemarm's small-perturbation  theory (ref. 12) for  the  generally  applicable 
r e l a t ion  between pressure  ra t io  and def lect ion  angle   for  a shock-wave compression 
up to   the  third-order   term is  (when 6 i s  replaced by s i n  6 )  

-l - 

St i l l   h ighe r   o rde r  terms i n   t h i s   r e l a t i o n  have  been considered by Laitone i n  
reference 13. Equation (ll) may be compared term by term with  equation (7) 
expanded i n  series with  the  assumption of small def lect ion angles where 

Beyond first order, it i s  clear   that   the   coeff ic ients   are   not   the  same. 

P3IEsEXI'A!I'ION OF COFEUZLATED RESULTS 

I n  o rde r   t o  test  the  correlation  accuracy  of  the  similari ty  parameters sug- 
gested by  approximate theories,  exact  computations have  been  done t o  cover  the 
Mach number range  from the  l o w  supersonic t o  high  hypersonic. The symbols i n  
f igure 2 represent  the  pressure  ratio  across 811 oblique shock given by exact two- 
dimensional  theory i n   t h e   s i m i l a r i t y  form suggested by  equation (7). The value 
of t h e   r a t i o  of  specific  heats 7 i s  constant  but results have  been computed 
for   values  of 7 from 1 t o  5/3 as designated by the   d i f fe ren t  symbols i n  
f igure  2. 

The end point   to   these  calculat ions i s  the  angle where  shock  detachment 
occurs.  For  reference  purposes and t o  provide  accurate  determinations of t he  
values of the  various  parameters at shock  detachment, t ab l e  I has  been  prepared. 

A t  all Mach numbers, the  pressure-deflection results for   the  var ious  values  
of 7 at a given Mach number can  be  seen to   co r re l a t e   i n   t he   s imi l a r i t y  form 

and l (b) .   Correlat ion i s  generally  excellent a t  the   r e l a t ive ly  low values  of 
Q and is  poorer at the  largest   values  of IQj where  shock  detachment i s  
approached. The correlat ion i s  best   for   those  values  of 7 approaching  unity; 

(KPY %) much better  than  given by the  uncorrelated form  examples i n   f i g u r e s  1(a) 
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one  can readi ly   no te   tha t  at a given Mach number the  first set of  computations 
t o  deviate from correlat ion i s  t h a t   f o r  7 = 5/3, the   next ,   the  7 = 1.4 results, 
and so on. 

One f inds  by  comparing t h e  results between the   var ious   par t s  of f igure  2 
t h a t   f o r  & h @ the   correlat ion  of   the results f o r   t h e   d i f f e r e n t  f ree-stream 
Mach numbers and a fixed  value  of 7 is  generally good at the  lower  values  of 

a decrease  in  the value  of 7 .  This is  i l l u s t r a t e d   i n   f i g u r e  3 f o r  7 = 1 and 
f o r  each Mach number.  However, t h e  range of good correlation  increases  with 

7 = 5/3. 

Comparison with  approximate  theories i s  a l so  of i n t e re s t .  The s o l i d   l i n e  
i n   f i g u r e s  2 and 3 designated  "extended  hypersonic  oblique-shock  similarity 
theory" is  a p lo t  of  equation (7). As presented,  this  curve i s  not a function 
of Mach number.  The prediction  of  the  pressure  parameter Kp given by equa- 
t i o n  (7) is  always good a t  very low values  of and t h e  range of good agree- 
ment increases  with Mach number. For 7 = 1 and Mach numbers greater   than 3, 
equation (7) gives good predictions  of  the  pressure  over  almost the e n t i r e  range 
from K& = 0 to   the   va lue   o f  K& f o r  shock  detachment. The accurate range of 
appl icabi l i ty  of  equation (7) decreases as 7 increases.  

Third-order  small-disturbance  theory  (eq. (11)) f o r  7 = 1 and 7 = 5/3 
i s  represented by the  dashed l i n e s   i n   f i g u r e  2. A t  the  lower Mach numbers 
( f ig .  2(a) ), this   theory  represents   an improvement over  equation (7) in   p red ic t ing  
both Mach  number e f f ec t s  and the   e f f ec t  of 7. As Mach  number increases,   the 
e f f e c t  of 7 i n   f i g u r e  2 tends  to   diminish and equation (11) approaches  equa- 
t i o n  (12) (which i s  the  third-order  form  of equation (7 ) ) .  (For Mach numbers 2 
and 3 ( f ig .   2(b)) ,   the   third-order   small-dis turbance  curve  for  7 = 5/3 coin- 
cides  with  the  extended  hypersonic  theory  'curve.) 

The correlation  parameter  for shock angle I(e i s  shown as a function of 
the  deflection  parameter IQj i n  figures 4 and 5 .  Actually,  since  the  pressure 
correlat ion i s  dependent on t h e  shock correlation, comments on correlat ion of 
the  exact  theory  designated by t h e  symbols are generally common to   bo th  and the  
reader is  referred to  the  preceding  discussion  of  the  pressure  correlation. 
Equation ( 9 )  i s  shown i n   f i g u r e s  4 and 5 and i s  designated as "extended hy-per- 
sonic  oblique-shock  similarity  theory." 

The correlation  of  the  exact  values of s ta t ic   dens i ty   ra t io   sugges ted  by 
equations ( 9 )  and (10) i s  shown i n  figures 6 and 7. Note that   the   densi ty   cor-  
relation  parameter Kp u t i l i z e s   d e n s i t y   r a t i o   i n   t h e  form pw/p2. Some caution 
should be exe rc i sed   i n   t ry ing   t o  judge the  success  of  correlation a t  high Mach 
numbers and la rge  %. I n  this case, the  values  of p p approach 

(7 - l ) / ( y  + 1) and thus  the  correlating  parameter Kp i s  i n s e n s i t i v e   t o  appre- 
c iab le   var ia t ions   in  p p2 as 7 approaches 1. The extended  hypersonic  theory 
determined  from  equations (9)  and (10) i s  a l so  shown i n   f i g u r e  4 as the   so l id  
l i n e .  

m/ 2 

m/ 
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The same form  of correlation  parameters  for mass f low  ra t io  w a s  assumed as 
fo r   t he   dens i ty   r a t io   i n   t he   p rev ious   s ec t ion .   Th i s   co r re l a t ion   fo r   va r ious  7 
is  shown i n   f i g u r e  8 and is  considered as good as the   dens i ty   ra t io   cor re la t ion  
at t h e  low Mach numbers, but at the  high  values  of K j j  and Mach number, there  
i s  a considerable  deviation from correlation. However, t h i s  result s t i l l  repre- 
sen ts  a large improvement over   the  effect   of  7 exhibited by the  uncorrelated 
results i n   f i g u r e s  l(g) and l ( h )  . 

No simple  parameter  such as has  been  found for   correlat ing  the  higher  
order   e f fec ts  of 7 on static  temperature  ratio  across  the  oblique shock.  There- 
fore ,   the   f i rs t -order   predict ion  of   small -per turbat ion  theory was resor ted   to  
(eq. ( 3 ) )  and these results are shown i n   f i g u r e  9. The correlation  cannot  be 
considered as successful as the  previous  ones based on higher  order  theory as 
evidenced  by  the low values  of  the  deflection  parameter a t  which s igni f icant  
deviations from correlation  take  place.  However, a comparison with  the  uncor- 
re la ted  results shown i n  figure l(i) indicates  a major improvement i n  minimizing 
the   e f f ec t s  of a change i n  7 and this  al lows  accurate  interpolation. 

Figure 10 w a s  prepared t o  show the  correlat ion  of   s ta t ic   temperature   differ-  
ence r a t io s   fo r   f i xed   va lues  of 7 over a wide range  of  free-stream Mach  num- 
bers. The correlation  of Mach  number va r i a t ion   e f f ec t s   i n   f i gu re  10 i s  obviously 
bet ter   than  the  correlat ion  of  7 var ia t ion   e f fec ts   p resented   in   f igure  9. 

An ofien  desired  parameter i s  the   to ta l -pressure   ra t io   across   the  
shock.  This  ratio  can  be  written as ( see  ref. 2) 

1 - 7 

oblique 

Equation (13) i s  indeterminate  for 7 = 1 but, by taking  the l i m i t  as 
approaches 1, the  following form i s  obtained which i s  va l id   fo r  7 = 1 

7 

Only equation (13) was set up  on the  automatic computing  machine,  by  which most 
of   the computing i n   t h i s   p a p e r  was done; therefore ,   the   to ta l -pressure   ra t io  
which i s  p lo t t ed   i n   f i gu re  11 does  not  contain  the  values  for 7 = 1. This   ra t io  
i s  p lo t t ed   i n   f i gu re  11 as a function of t h e  wedge def lect ion  correlat ion param- 
eter. Mach numbers from 1.1 t o  40 are shown f o r  a constant  value  of 7. One 
f inds  that   for   values   of   the   def lect ion  parameter  below  roughly 2, t he   r a t io   o f  
to ta l   p ressures  i s  v i r t u a l l y  independent  of the  value  of 7 assumed. However, 
for  values  of  the  deflection  parameter  greater  than  about 2, the   to ta l -pressure  
r a t i o  becomes a strong  function  of  the  value of 7 assumed. 
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APPLICATION TO A REAL GAS 

I n  a relatively  simple manner, a method can be derived w h i c h  allows  the 
preceding  correlations t o  be used  for  evaluation of  many of the  oblique shock 
parameters i n  a real   gas .  

From mass flow and geometrical 
considerations 

uN ’2 t a n  0 ”” 

uN,2 p, - (15) 

As given  by  Trimpi and Jones  (ref. 8),  
an  effective  value of the  isentropic  
exponent ye i s  used t o  describe  the 
density change across  the  oblique shock 

applied t o  a real   gas i n  equilibrium. 
By def in i t ion  

03 wave so tha t   t he  computations may be 

(&F - 1 
T e -  2 - 1  (16) 
” 1 Po0 
p2 

Consider  the  case where the  shock wave angle 0 and the  deflection  angle 6 
a re  s m a l l  enough so that the  tangent and s ine of these  angles may be  replaced 
by the  angle   in   radians.   Solving  for   the  densi ty   ra t io   in   equat ion (16), sub- 
s t i tu t ing   th i s   re la t ion   in to   equat ion  (l?), and solving  the  result ing  quadratic 
gives  the  following  similari ty  relation between  shock angle and deflection 
angle : 

When the  momentum and continuity  equations  are combined, t he   s t a t i c -  
pressure  ratio  across the shock i s  

Substi tuting  for  the  static  density  ratio  according  to  equation (16) and fur ther  
manipulation  yields  the  relation between s ta t ic -pressure   ra t io  and  shock angle 
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Combining equations (17) and (19) r e su l t s   i n   r e l a t ion  between pressure  ra t io  
and deflection  angle which i n   s i m i l a r i t y  form i s  

By u t i l i z ing   t he  same reasoning as for  equation ( 7 ) ,  equations  (20) and (17) 
can be wr i t ten   in  extended  hypersonic  similarity form as 

By rewriting  equation (16) the  density 

The energy  equation  with  the mass flow 
rat io   across   the shock 

r a t io   i n   co r re l a t ion  form i s  

c J 

or  with  equation  (23)  the  enthalpy  ratio 
angle as 

equation (15) gives  the  s ta t ic   enthalpy 

can be  writ ten  in  terms of the  shock 

The r a t i o  of the  resul tant   veloci ty  behind  the  oblique shock t o   t h e   f r e e -  
stream  velocity i s  given i n  appendix B of reference 8 and in   the   p resent  
nomenclature i s  

9 



c J 

or  with  equation  (23) 

Equations (21) and (22) are approximate  equations  corresponding t o  equa- 
t i ons  (7) and (9)  f o r  a perfect  gas.  Equations (23),  (24), and (25) are exact 
but, when equation (22) i s  used t o  solve  those  equations,   the  l imitations  inher- 
ent   in   equat ion (22) apply. 

If the  equations are t o  be  used t o  solve  for   the  desired  condi t ions of t h e  
gas, it may be  easier   to   use  equat ion  (22)   in   the form 

since  the  values  of  7e  are  usually  given as a function of MN. Such values 
of ye a r e  shown in  f igure  12  for   a tmospheric  air at various  att i tudes  adapted 
by Trimpi i n  unpublished work from the  equilibrium normal  shock calculations of 
Huber in   reference 14  which uses   the ARDC 1959 model atmosphere (ref.  15). A 
similar p lo t  i s  shown as figure 2 of  reference 8 based  essent ia l ly  on the  
ARDC 1956 model atmosphere ( r e f .  16).  

To uti l ize  the  correlation  plots  presented  earlier,   the  following  procedure 
can  be  followed.  In  figures 2, 4, and 6 ( a l s o   f i g s .  3, 5, and 7 with  caution 
since  only  7-values  of 1 and 5/3 are given)  read  the 7 + 1 value  in   the  def lec-  
t i o n  parameter  of  the  abscissa as 7e + 1. In   f i gu re  2 read  the  7-function  in 
the  pressure  parameter  of  the  ordinate as (ye  + l ) / ym.  NO function of y i s  
contained in  the  ordinate  (shock  angle  parameter) of figure 4 and t h i s  parameter 
i s  read unchanged. In   f i gu re  6, the  7-function of the  densi ty   parameter   in   the 
ordinate i s  read as ye + 1. 

The charts  given  previously  are  not  too  useful  for  obtaining  enthalpy  ratio 
because  of  the more limited  range  over which correlat ion was obtained. But 
(which i s  equivalent   to  M N )  i s  readily  obtained as outlined  previously and 
thus, from % and t h e  known value of' yw and ye ( f i g .  12  f o r  air), the  
enthalpy  ra t io  i s  calculated from equation (24). Temperature r a t i o  i s  then 
obtained from avai lab le   t ab les  and charts of thermodynamic proper t ies   ( for  
example, re fs .  17 and 18 or other   appropriate   tables  or Mollier  diagrams f o r  
a i r ) .  An example of  the  flow-parameter  variation  with  flow-deflection  angle  in 
an  equilibrium  real  gas from t h e   c o r r e l a t i o n s   i n   t h i s   p a p e r  i s  shown i n  

10 



f igu re  13. The Mach number chosen w a s  20 at an a l t i tude   o f  120,300 feet. For 
comparison  purposes the  equivalent  flow  parameters  for a perfect  gas  with 
7 = 1.4 a t  t h e  same Mach  number are also shown.  The real gas  calculations were 
carr ied out only t o  a value  of Q = 30 since above th i s   po in t   t he  m a x i m u m  
deviations of the  exact  theory  values of the.shock  angle  parameter % from 
cor re la t ion   for  y = 1.4 exceed 1.5 percent  (f ig.  4 (d) ) .  Even wi th   th i s  limita- 
t i o n  on Q, t h e  real gas  computations for   th i s   case   ex tend   ou t   to  a deflecti.on 
angle  of  about 40°. Comparison with  the more exact  formulations  given  in ref- 
erence 8 shows that ,   for   the  parameters   given  in   f igure 13, t h e   e r r o r   i n   t h e  
value  of 6 i s  only 1 / 4 O  at 6 = 4 3 O ,  0.lo at 6 = 3 5 O ,  and is  reduced t o   t h e  
negligible  value  of 0.03' at 6 = 29O. 

PRESSURE W I O  ACROSS SUDDEN EXPANSION 

Although t h i s  paper  primarily  considers  the  oblique shock  case, some useful  
correlat ions are avai lable   for   the  case of isentropic  expansion  around a sharp 
corner. Here, only  pressure will be  considered.  For  the  expansion  case, 
Linnell  ( ref .  10) developed  the  approximate  relation 

p2 ( y ; 1 K)y-l 

- 
, - =  1+- 
P, 

I n   t h i s  development there  is  a l imi ta t ion  imposed by cer ta in  series approxima- 

t ions  used  that  & > *; also, equati'on  (27)  has no meaning unless 

(7 - l ) K  > -2. The similari ty  parameter K was given by Linnell  as t h e  hyper- 
sonic s m a l l  angle r e s u l t  K = &6. Expanding equat ion  (27)   in   ser ies   gives   the 
result 

r 

Consistent  with Busemann's observation  in  reference 12, t h e  expansion r e l a t ion  
equation  (28) is  t h e  same up t o   t h e  second-order term as t h e  shock r e l a t ion  
(eq. ( 5 )  ) expanded i n  series. (For example, see eq. (12).  ) This relat ionship 
suggests t h a t  K be  taken as G 2 s i n  6h 
equation (7) w a s  obtained. Thus equation 

as i n  the  oblique shock case where 
(27) i s  wr i t ten  as 

B 
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The second-order  equality of the  shock and expansion  equations  further 
suggests  the Q,Kp type of presentat ion  to  minimize e f fec ts  of  changing the 
value of y as was  done for   the  obl ique shock case. Such a presentation i s  
given i n   f i g u r e  14. The calculations were based on tables   given  in   refer-  
ences 2, 6, 19, and 20. (It may be  noted tha t   r e f .  20 used for  the  lowest 
values of 7 is  tabulated  only up t o  a loca l  Mach  number of 8.) The best  cor- 
r e l a t ion  of exact  theory  (Prandtl-Meyer) for  various  values of free-stream Mach 
number at a constant  value of 7 i s  obtained at the  highest  value of spec i f ic  
heat  ratio,  7 = 5/3, with a decreasing  extent of correlation as 7 decreases. 
Approximate equation ( 2 9 )  given by the   so l id   l i ne   i n   f i gu re  14  i s  a good f i t  t o  
the  Prandtl-Meyer results at the  higher Mach numbers. Correlation of the   e f fec t  
of  changing the  value  of 7 i s  fouud t o  be good for  values of Q approaching 
2 i f  one compares the  various  parts of f igure 14. 

CONCLUDING RENARKS 

An analytic  investigation was done t o  show the  extent of correlation of 
the  exact  oblique shock parameters  that may be  accomplished by means of simi- 
l a r i t y  parameters  suggested  by  approximate  theory. The exact  theory  for  the 
inviscid  flow of a perfect  gas was calculated  for  Mach numbers of 1.1 t o  40, 
r a t io s  of specif ic   heats  from 1 t o  5/3, and angles of a t tack from 0' t o  shock 
detachment. 

A t  all Mach numbers, pressure,  density, mass flow  ratios,  and shock angle 
can  be correlated  with  excellent  accuracy  over a significant  range of deflec- 
t i o n  angle; however, th i s   cor re la t ion  becomes progressively  poorer as the  angle 
of a t t ack   fo r  shock  detachment i s  approached. However, even at   the   higher  
deflection  angles, improvements i n  reducing  the  effect  of 7 are  found so t h a t  
accurate  interpolation  of  the  results can  be made.  The  same s imi la r i ty  param- 
eters   a lso  correlate   the  effect   of  Mach  number, i n   t h e  same range where the  cor- 
r e l a t ion  of the   e f fec t  of y is good, f o r  Mach numbers greater  than about @. 

No simple  parameter was found for   correlat ing  the  higher   order   effects  of 
7 on s t a t i c  temperature  ratio  across  the  oblique shock. However, f i r s t -order  
correlations,  although  not as successful  as  those  previously  referred  to, gave 
a major improvement i n  reducing  the  effect of a change i n  7 so that  accurate 
interpolations of the   resu l t s   a re   poss ib le .  The correlat ion  of   the  effect  of 
Mach number on temperature  ratio was, however, apparently as good as t h a t   f o r  
the  previously  described  flow  parameters. 

From ccmsideration  of  the  approximate  theory and the  concept  of e f fec t ive  
r a t i o  of specific  heats,   the  oblique shock correlations have  been  found t o  be 
useful for the  rapid  calculation of many flow  parameters f o r  an  equilibrium 
real   gas .  
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Some useful   correlat ions  are   a lso  given  for   the  case  of   isentropic  expan- 
sion around a sharp  corner. 

Langley Research  Center, 
National  Aeronautics and Space Administration, n Langley Station, Hampton, Va., March 22, 1963. 
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